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Abstract 

 
Scene graphs serve as semantic abstractions of images and play a crucial role in enhancing 
visual comprehension and reasoning. However, the performance of Scene Graph Generation 
is often compromised when working with biased data in real-world situations. While many 
existing systems focus on a single stage of learning for both feature extraction and 
classification, some employ Class-Balancing strategies, such as Re-weighting, Data 
Resampling, and Transfer Learning from head to tail. In this paper, we propose a novel 
approach that decouples the feature extraction and classification phases of the scene graph 
generation process. For feature extraction, we leverage a transformer-based architecture and 
design an adaptive calibration function specifically for predicate classification. This function 
enables us to dynamically adjust the classification scores for each predicate category. 
Additionally, we introduce a Distribution Alignment technique that effectively balances the 
class distribution after the feature extraction phase reaches a stable state, thereby facilitating 
the retraining of the classification head. Importantly, our Distribution Alignment strategy is 
model-independent and does not require additional supervision, making it applicable to a wide 
range of SGG models. Using the scene graph diagnostic toolkit on Visual Genome and several 
popular models, we achieved significant improvements over the previous state-of-the-art 
methods with our model. Compared to the TDE model, our model improved mR@100 by 70.5% 
for PredCls, by 84.0% for SGCls, and by 97.6% for SGDet tasks. 
 
 
Keywords: Scene Graph Generation, Transformer-based Architecture, Distribution 
Alignment, Model-independent, Visual Genome Dataset. 
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1. Introduction 

The ultimate goal of computer vision is to develop intelligent systems that can extract 
valuable insights from images, videos, and other visual data with the same level of mastery as 
humans. Capturing the relationships between objects in a scene is often crucial for achieving 
higher-level visual comprehension and reasoning tasks [1-4], serving as a driving force for 
such endeavors. Scene Graph Generation (SGG) aims to address this challenge by employing 
data structures known as scene graphs. These graphs describe the instances of objects within 
a scene and their relationships, effectively encoding images into abstract semantic components. 
As early as 2015, researchers proposed leveraging the visual features of objects in an image 
and their relationships as a means to accomplish various computer vision tasks, include Visual 
Question Answering [1, 3-5], Image Captions [2, 6, 7], and other related jobs in the field of 
Computer Vision [8-10]. Visual relationship mining has been demonstrated to significantly 
enhance the performance of relevant computer vision tasks, facilitating improved 
understanding and reasoning of visual scenes by machines. 

However, the task of SGG is currently facing practical challenges primarily due to a high 
number of low-semantic predictions, which limits the application of scene graphs. There are 
several factors contributing to this issue. Firstly, in widely used representative datasets, the 
distribution of relational samples is highly imbalanced, with a long-tailed distribution [11, 12]. 
For instance, in the widely used Visual Genome (VG) dataset [10, 13], the sum of the top and 
middle relations comprises more than half of the total relations. Consequently, the network 
exhibits a strong preference for commonly occurring relations, while struggling to accurately 
predict relations in less frequent classes or tail classes. For example, there are only a few low-
semantic head predicates (such as "on" and "has") that have a large and diverse set of instances, 
which dominate the training process. On the other hand, a small number of highly informative 
tail predicates (like "riding" and "watching") often tend to be misclassified into head classes, 
resulting in insufficient accuracy or reliability for downstream tasks. Moreover, due to visual 
similarity and sparse training data, distinguishing fine-grained relations (such as "standing on," 
"sitting on," and "flying on") from one another can be more challenging. Nonetheless, we 
should not attribute the biased training solely to the distribution of samples. In reality, the 
distribution of actual samples typically follows a long-tail distribution, where head categories 
have a higher number of instances compared to tail categories [14]. The majority of biased 
comments can aid the model in learning valuable contextual priors [15, 16] to streamline 
candidate searches and eliminate unnecessary ones. 

To tackle this issue, extensive research has focused on developing unbiased models through 
approaches such as Re-weighting [17], enhancing network structures [18, 19], and 
distinguishing unbiased from biased representations [14]. These approaches primarily focus 
on the collaborative training of feature extractors and classifiers. However, it remains unclear 
how this joint learning scheme enhances relational predictive power. Does it achieve this by 
learning more effective features or by adjusting classifier decision boundaries to better process 
the data? To address this question, we divide the SGG process into two distinct processes: 
feature extraction and classification. We utilize transformer-based structures for feature 
learning, followed by the Distribution Alignment (DA) method [20-22] to adjust each 
classification probability distribution. Initially, we train the feature extractor and classifier 
uniformly on the original dataset. Once the model stabilizes, we fix the feature extractor 
parameters and retrain the classification head utilizing a DA algorithm [20-22]. This strategy 
calibrates the output of the classifier by comparing it to a reference distribution of classes that 
promotes balanced predictions. By incorporating class priors and data inputs, we can employ 
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this alignment approach to systematically learn class decision boundaries. 

Our contributions can be summarized as follows:  
 (1) We provide evidence that the pronounced bias in the SGG results is primarily driven 

by imbalanced decision boundaries rather than the process of feature learning. To 
demonstrate this, we decouple the feature extraction and classification stages of the 
SGG process and achieve surprising results. 

 (2) Building upon these findings, we propose a two-stage training approach that is model-
independent. In the second stage, we utilize a DA algorithm [20-22] to realign the 
decision boundaries of the SGG predicate classifier. 

 (3) Extensive experiments are conducted on the existing models, demonstrating that our 
DA strategy [20-22] consistently and significantly enhances performance. As 
presented in Fig. 1, the Motifs [16] method shows notable improvement across all 
three tests at mean Recall@100. 

 
Fig. 1. MR@100 improvement on three tasks over Motifs. 

2. Related Work 

2.1 Scene Graph Generation 
SGG generates visual representations of images in the form of graphical abstractions, 
facilitating visual relational reasoning and comprehension across various downstream tasks 
[11, 23-25]. Previous research [3, 4] concentrated on object recognition and relationship 
detection using independent networks while ignoring the rich contextual information. To 
incorporate global visual features, recent works have used more powerful feature refinement 
modules to encode rich contextual information, such as message-passing mechanisms [8, 26], 
various LSTMs [16, 18], graph neural networks [2, 11], and self-attention networks [27, 28]. 
Due to the significant bias present in the dataset, although object recognition achieves high 
accuracy, relationship detection falls far short of providing satisfactory support for 
downstream vision and language tasks. To mitigate biased relation prediction, several methods 
have been proposed, including debiasing strategies such as Re-sampling [29] or Re-weighting 
[30], separating unbiased representations from biased relations [14], and filtering out irrelevant 
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predicates using tree structures [18, 19]. However, these methods often prioritize overfitting 
the head class at the expense of the tail class. In this paper, we propose a novel two-stage 
training strategy that separates the SGG process into feature extraction and classification 
stages to effectively tackle the problem of long-tail distribution. Additionally, we employ DA 
[20-22] to recalibrate the probability distribution of each class, eliminating the need for 
sampling strategies, complex loss functions, or additional storage modules. 

2.2 Unbiased Classification 
In previous studies, classification methods on highly biased training data were extensively 
investigated to mitigate the long-tailed distribution problem in visual tasks. This can be 
classified into three categories: (1) balancing data distribution through data augmentation and 
resampling [31-35], removing bias from learning strategies through Re-weighting losses [35] 
and well-designed network structures [18, 19, 36, 37]; (2) distinguishing biased and unbiased 
models for prediction [14, 38, 39]; and (3) separating the classifier from the end-to-end 
learning approach [12, 22, 40-42] and then rebalancing the classifier to improve long-tail 
prediction. Our scheme falls into the third category but differs from existing methods in that 
we use a two-stage training strategy to decouple feature extraction and classifier, and we only 
adjust the classification head in the second stage using a DA algorithm [20-22]. 

3. APPROACH 
A scene graph is a structured data representation that encodes object instances as nodes and 
relations between objects as edges, capturing the content of an image scene. In IMP [26], the 
objective of Scene Graph Generation (SGG) is to accurately create a graph that maps the image 
in a correct manner. A scene graph can be mathematically defined as G = {𝐵𝐵,𝑂𝑂,𝑅𝑅}, where 𝐵𝐵 
represents bounding boxes, 𝑂𝑂 represents object labels, and 𝑅𝑅 represents relationship labels. 
The probability distribution of the scene graph P(𝐺𝐺|𝐼𝐼) is typically decomposed into three 
components when given an image 𝐼𝐼, as shown in (1). 
 ( | ) ( | ) ( | , ) ( | , , )P G I P B I P O B I P R O B I=  (1) 

To begin with, the probability distribution P(𝐵𝐵|𝐼𝐼) is modeled using the commonly used 
pre-trained Faster R-CNN [43], which generates a set of bounding box suggestions. 
Subsequently, the object detection model 𝑃𝑃(𝑂𝑂|𝐵𝐵, 𝐼𝐼)  predicts the object labels for each 
bounding box based on the potential proposals. Finally, the relationship prediction model 
𝑃𝑃(𝑅𝑅|𝑂𝑂,𝐵𝐵, 𝐼𝐼) is employed to infer the relationship between each pair of objects and generate 
the scene graph for the given image based on the object detection results. In our two-stage 
learning model, we follow the aforementioned framework in the first stage. In the second stage, 
𝑃𝑃(𝑅𝑅|𝑂𝑂,𝐵𝐵, 𝐼𝐼) is decomposed into 𝑃𝑃(𝐿𝐿|𝑂𝑂,𝐵𝐵, 𝐼𝐼) and 𝑃𝑃(𝑅𝑅|𝐿𝐿) (where 𝐿𝐿 represents the probability 
distribution of the predicates). Then, the classification head 𝑃𝑃(𝑅𝑅|𝐿𝐿)  is adjusted using a 
Distribution Alignment (DA) algorithm [20-22], which can be mathematically expressed as 
(2): 
 ( ) ( ) ( ) ( ) ( )| | | , | , , |P G I P B I P O B I P L O B I P R L=  (2) 

3.1 Overall Framework 
Our two-stage learning model, depicted in Fig. 2, can be summarized in four stages. (a) We 
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employ a pre-trained Faster RCNN-FPN [43, 44] to extract 𝐾𝐾 targets, denoted as O = {𝑜𝑜𝑖𝑖}𝑘𝑘, 
where each target has visual features 𝑜𝑜𝑖𝑖 ∈ ℝ4096 and spatial features 𝑏𝑏𝑖𝑖 ∈ ℝ4. Additionally, 
we extract G object pairs, denoted as U = �𝑢𝑢𝑖𝑖𝑖𝑖�

𝐺𝐺, with visual features 𝑢𝑢𝑖𝑖𝑖𝑖 ∈ ℝ4096. (b) We 
generate object features using a transformer-based Object Encoder that leverages both the 
visual features 𝑜𝑜𝑖𝑖 and spatial features 𝑏𝑏𝑖𝑖 of the target. This allows us to dynamically collect 
multiple contextual information for each object without the constraints of sequential input. 
The Object Decoder comprises of a fully connected layer followed by a Softmax layer, which 
refines object predictions and bounding boxes. To capture the contextual semantics and 
generate edge features, we concatenate the visual features 𝑢𝑢𝑖𝑖𝑖𝑖  of the object pair, the label 
embedding 𝑙𝑙𝑖𝑖𝑖𝑖 ∈ ℝ400 produced by the Object Decoder, and the spatial feature embedding 
𝑏𝑏𝑖𝑖𝑖𝑖 ∈ ℝ256. We then pass this concatenated input through another transformer-based encoder, 
known as the Relation Encoder. The Relation Encoder is also built on a transformer encoder 
and is responsible for generating edge features. The Relation Decoder is a fully connected 
layer used to generate relation features 𝑟𝑟 ∈ ℝ2052. (c) To predict the probability distribution 
of predicates, we concatenate the linguistic prior features calculated using the object pair labels 
𝑙𝑙𝑖𝑖𝑖𝑖 , relation features 𝑟𝑟, and visual features 𝑢𝑢𝑖𝑖𝑖𝑖 . This concatenated input is then fed to the 
Predicate Encoder, and the Predicate Decoder consists of a fully connected layer followed by 
a Softmax layer. (d) We have redesigned the classifier head to distinguish between feature 
extraction and classification processes. The new classifier head consists of two calibration 
parameters and an adaptive calibration function. These parameters are used to linearly modify 
the scores of each category, and the adaptive function combines the original and modified 
category values in an adaptive manner. Once the model has stabilized, we will retrain the 
classifier head using DA techniques [20-22] to adjust the classifier's decision boundaries. 

 
Fig. 2. The overview of our model. 

3.2 Object and Relation Transformer 
The fact that certain objects consistently appear together in specific scenes provides valuable 
prior knowledge and serves as an informative cue for expanding the semantic understanding 
of these objects. In previous works such as Motifs [16] and VCTree [18], LSTMs/TreeLSTMs 
were used to encode and decode the co-occurrence relationships among objects. However, in 
this paper, we employ a transformer-based encoder to capture diverse contextual information 
specific to each object in an adaptive manner, without being constrained by sequential input 
limitations. To achieve this, we concatenate the visual features 𝑜𝑜𝑖𝑖 of the object with the object 
label embedding 𝑙𝑙𝑖𝑖0 and the spatial feature embedding 𝑏𝑏𝑖𝑖. These concatenated features are then 
passed through a fully connected layer and serve as the input to the Object Encoder, as 
illustrated in (3). 
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In addition to possessing a local structure, scene graphs also exhibit a higher-order structure. 
For instance, if the “eye of cat” is present, it is highly likely that the “ear of cat” will also be 
present. Similarly, when an image features the “head of elephant”, it is probable that the “legs 
of elephant”, “trunk of elephant”, and “ears of elephant” will follow suit. Many patterns 
observed in the VG dataset [13] involve combinations of parts or objects, which are typically 
grouped together if they appear together at least 50 times and are at least 10 times more likely 
to co-occur than to occur separately. Over 50% of the images in the dataset showcase a parent 
motif comprising at least two object-relationship-object combinations [16]. Contrary to 
previous research that solely encoded the visual features of subjects and objects, we discovered 
that the representation of relationships is also enhanced by the union visual features of object 
pairs, denoted as 𝑢𝑢𝑖𝑖𝑖𝑖. Consequently, we merge the label embedding of the object pair 𝑙𝑙𝑖𝑖𝑖𝑖, the 
location embedding 𝑏𝑏𝑖𝑖𝑖𝑖, and the union visual feature 𝑢𝑢𝑖𝑖𝑖𝑖, as illustrated in (4). 
 ( )( )0, ,OT i i iInput f cat o l b=  (3) 

 ( )( ), ,RT ij ij ijInput f cat u l s=  (4) 

where 𝑓𝑓 represents the fully connected layer. The structure of the Object and Relation Encoder, 
shown in Fig. 3, enables dynamic capturing of contextual semantics. The edge features e ∈
ℝ2052  are then passed through a fully connected layer. Both the Object and Relation 
Transformers employ fully-connected layers as decoders. 

 
Fig. 3. The structure of Object and Relation Encoder. 

3.3 Adaptive Fusion Model.  
We only use the adjusted object pair labels from the Object Transformer and calculate the 
relationships between the target pairs using language prior knowledge, mapping the results to 
ℝ2052 . The joint visual features 𝑢𝑢𝑖𝑖𝑖𝑖  are projected into the ℝ2052  space. To dynamically 
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integrate the joint visual features 𝑢𝑢𝑖𝑖𝑖𝑖, relation features 𝑟𝑟𝑖𝑖𝑖𝑖, and language prior features 𝑓𝑓𝑖𝑖𝑖𝑖, we 
propose a Predicate Encoder equipped with an attention score function and a fusion function, 
as illustrated in (5) and (6). 
 ( )( ), , , ,u r f ij ij ijcat u r fα α α σ=  (5) 

 ( ) ( ) ( )1 1 1ij u ij r ij f ijp u r fα α α= + ⋅ + + ⋅ + + ⋅  (6) 

where σ(⋅) denotes the sigmoid function. For each object pair, the fused features 𝑝𝑝𝑖𝑖𝑖𝑖  are 
inputted into the Predicate Decoder, which consists of a fully connected layer, to generate a 
probability distribution 𝐿𝐿𝑖𝑖𝑖𝑖0 . over the predicates. 

3.4. Classifier Head 

The SGG process can be divided into two parts: feature extraction 𝐹𝐹(⋅) and classification 𝐻𝐻(⋅). 
In the initial step, we jointly train 𝐹𝐹(⋅)  and 𝐻𝐻(⋅). Once the model stabilizes, we fix the 
parameters of 𝐹𝐹(⋅)  and retrain 𝐻𝐻(⋅)  using DA in the subsequent phase. In the feature 
extraction phase, we obtain the predicate features 𝑝𝑝𝑖𝑖𝑖𝑖  and the initial predicate probability 
distribution 𝐿𝐿𝑖𝑖𝑖𝑖0 . We then fine-tune the probability distribution of each predicate. We introduce 
an adaptive calibration strategy based on two calibration parameters and an adaptive 
calibration function. Specifically, we denote the class fraction in 𝐿𝐿𝑖𝑖𝑖𝑖0  as 𝐿𝐿𝑖𝑖𝑖𝑖0 = [𝐿𝐿10 ,⋯ , 𝐿𝐿𝐶𝐶0 ] and 
introduce a class-specific linear transformation to modify the fraction, which is described as 
(7). 
 0 ,j j j jL L j Cα β= ⋅ + ∀ ∈  (7) 

where the calibration parameters 𝛼𝛼𝑖𝑖 and 𝛽𝛽𝑖𝑖 are learned from the data set for each class. As 
mentioned earlier, we define a confidence score function σ(𝑝𝑝𝑖𝑖𝑖𝑖) , which is an adaptive 
combination of the original probability distribution and the transformed class scores (Next, we 
replace 𝑝𝑝𝑖𝑖𝑖𝑖 with 𝑥𝑥), as illustrated in (8). 
 ( ) ( )( ) ( )( ) ( )0 0ˆ 1 1j j j j j jL x L x L x L xσ σ σ α σ β= ⋅ + − ⋅ = + ⋅ + ⋅  (8) 

The confidence score 𝜎𝜎(𝑥𝑥) is computed for all inputs 𝑥𝑥 through a linear layer followed by 
a nonlinear activation function, such as the sigmoid function. The purpose of 𝜎𝜎(𝑥𝑥) is to 
determine the amount of calibration required for a given input 𝑥𝑥. Using the calibrated class 
fraction, we utilize the softmax function to create a predictive distribution for our model, as 
illustrated in (9). 

 ( ) ( )
( )

1

ˆ

ˆ

j
m C

k
k

exp z
p y j x

exp z
=

= =

∑
 (9) 

3.4. Distribution Alignment 
We propose a method that predicts 𝑝𝑝𝑚𝑚(⋅) in a balanced way by aligning it with reference 
distribution of the category, given the training set. Formally, the category reference 
distribution is denoted as 𝑝𝑝𝑟𝑟(𝑦𝑦|𝑥𝑥), and our goal is to minimize the expectation of the KL-
dispersion between 𝑝𝑝𝑟𝑟(𝑦𝑦|𝑥𝑥) and the model prediction 𝑝𝑝𝑚𝑚(𝑦𝑦|𝑥𝑥), as illustrated in (10). 
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The expectation is approximated by the empirical mean on the training dataset 𝒟𝒟𝑡𝑡𝑟𝑟, where 𝐶𝐶 
is a constant. We apply a method that assigns different weights to different classes to align the 
distribution of the training data with the reference distribution. We use a weighted empirical 
distribution as the reference distribution, as illustrated in (11). 
 ( ) ( ) ,r i c c ip y c x w y c C= = ⋅ ∀ ∈∣   (11) 

We use ℱ𝑐𝑐(𝑦𝑦𝑖𝑖) to denote a function that is 1 when  𝑦𝑦𝑖𝑖 = 𝑐𝑐 and 0 otherwise, and 𝑤𝑤𝑐𝑐 to represent 
the weight of class 𝑐𝑐. We calculate the reference weights from the training data by using the 
observed frequencies of each class 𝑟𝑟 = [𝑟𝑟1,⋯ , 𝑟𝑟𝑘𝑘], as illustrated in (12). 

 
( )

( )
1

1/
,

1/
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c K
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k
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w c C

r

ρ

ρ

=
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∑
 (12) 

where 𝜌𝜌 is a scaling hyperparameter. 

4. Experimental Results and Analysis 
In this section, we provide a detailed description of the implementation details for our research. 
Subsequently, we present the quantitative results and conduct a qualitative analysis using the 
Visual Genome (VG) dataset. 

4.1 Implementation  
Based on previous literature, we employed a pre-trained Faster R-CNN [43] with Resnet-101-
FPN [44, 45] as the underlying detector for our SGG model, and fix its parameters. The input 
images were scaled to have a longer side of 1k pixels. The Object Transformer consisted of 4 
transformer encoders, while the Relation Transformer had 2 transformer encoders, both with 
12 attention heads. For the DA using the generalized reweighting, we set the parameter 𝜌𝜌 to a 
fixed value of 1. We use gradual warmup with a starting learning rate of 0.0024, then return 
to the set learning rate of 0.024 after 500 iterations to continue training, and then reduce the 
learning rate by a factor of 10 when the loss plateaus, with a minimum of 0.00024. To train 
our model, we utilized the SGD algorithm with a batch size of 12. All experiments were 
conducted successfully using PyTorch on two NVIDIA Tesla V100 GPUs.  

4.2. Quantitative Results 
Dataset: We use the VG dataset [13] to evaluate our model. It has 108K images, 75K object 
classes, and 37K predicate classes. We follow the standard VG split [26, 46], which selects 
the top 150 object classes and 50 predicate classes, because 92% of the predicate classes have 
fewer than 10 samples. The VG split only provides the training and test sets, so we take 5K 
validation sets from the training set as done in previous work [14, 19]. 
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Tasks and Evaluation: The SGG task is divided into three subtasks based on the prior work[16]: 
(1) Predicate classification (PredCls) only predicts predicate labels. (2) Scene graph 
classification (SGCls) forecasts object and predicate labels based on the ground-truth 
bounding boxes of labels. (3) Scene graph detection (SGDet) predicts bounding boxes, object 
and predicate labels. We adopt the unbiased metric mean Recall@k (mR@k)[14] to measure 
the unbiased scene graph, which computes Recall@k for each class individually and averages 
the Recall@k for all classes separately. 
Comparison: We evaluated our debiasing method against the state-of-the-art debiasing 
methods TDE [14] and CogTree [19] on three basic models: Motifs [16], VCTree [18], and 
O&R-Transformer. All of the above models share the same pre-trained Faster R-CNN [43] 
detection. We also compared O&R-Transformer to other biased models, including GT-
Transformer [19], Motifs [16], and VCTree [18]. The following are our observations from 
Table 1: (1) Distribution Alignment (DA) is an effective method that can improve the mR@k 
of all biased models across all evaluation tasks and outperforms other debiasing techniques. 
(2) On the baseline, our biased model O&R-Transformer outperforms existing SGG models 
[16, 18, 19], demonstrating that the contextual information gathered by the transformer 
structure is helpful for distinguishing between relation representations. (3) When compared to 
GT-Transformer [19], our model performs better in both PredCls and SGDet, demonstrating 
that the union visual features of object pairs are very beneficial for relation prediction, and 
slightly worse in the SGCls baseline, indicating that accurate object recognition aids in relation 
identification. 

Table 1. Comparison on Visual Genome dataset 

Model 
SGDet SGCls PredCls 

mR@50 mR@100 mR@50 mR@100 mR@50 mR@100 

Motifs [16] 7.3 8.5 9.2 9.7 16.1 17.5 
SG-Transformer [19] 7.6 8.9 10.8 11.5 17.0 18.3 

VCTree [18] 7.5 8.7 11.1 11.8 17.6 18.9 

O&R-Transformer(Ours) 8.0 9.5 10.2 10.7 18.5 20.1 

Motifs + TDE [14, 16] 8.9 10.9 13.2 15.7 21.7 25.6 
Motifs + CogTree [16, 19] 11.8 13.5 17.1 18.4 29.5 32.1 

Motifs + DA 14.8 17.8 20.2 21.4 37.8 40.1 

VCTree + TDE [14, 18] 9.1 11.0 16.0 18.1 24.8 28.1 
VCTree + CogTree [18, 19] 10.2 12.1 15.2 16.2 27.0 29.5 

VCTree + DA 13.0 15.6 25.1 26.3 36.6 38.6 

Ours + TDE 7.0 8.3 10.6 11.9 20.1 23.4 
Ours + CogTree 10.9 12.7 15.6 16.4 28.1 30.1 

Ours + DA 13.7 16.4 20.7 21.9 37.3 39.9 

 



3392                                                                                                                    Jia et al.: A Novel Two-Stage Training Method for  
Unbiased Scene Graph Generation via Distribution Alignment 

Fig. 4 also displays Recall@100 for the top 25 common predicates. Motifs + DA 
outperforms Motifs [16] on the majority of tail classes while decreasing on a few head classes, 
indicating that the increase in mR@K is due mainly to tail classes rather than head classes. 
While the decreasing head classes are mostly coarse relations like “on”, “has”, and “near”, the 
improving tail classes are mostly fine-grained relations like “standing on”, “in front of”, and 
“sitting on”, demonstrating that DA can successfully detect fine-grained relations. 

 
Fig. 4. The predicate of Recall@100 on PredCls. 

 

4.3 Ablation Study 
Table 2 presents the ablation results, which aim to validate the contribution of each component 
in our model. Models 1-3 are used to evaluate the effectiveness of individual components. 
Model 4, based on the feature fusion method proposed in TDE [14], demonstrates that the 
combination of union visual features and language prior features provides complementary 
information for the SGG task compared to Model 1. Model 2 improves upon Model 1 by 
introducing the Adaptive Fusion Module (AFM), which adaptively combines relational 
features, joint visual features, and linguistic prior features. This enhancement leads to superior 
performance compared to baseline models, highlighting the effectiveness of our AFM in 
seamlessly integrating these features. Model 3 expands upon Model 1 by incorporating a 
classification head, albeit with just one stage of end-to-end training. The findings reveal that 
the model's performance, solely based on the classification head, exhibits marginal 
improvement compared to the baseline model in the PredCls task. This suggests that the 
decision boundaries established by the classifier, rather than achieving enhanced feature 
representations, play a crucial role in influencing the long-tail recognition ability. 
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Table 2. Ablation study of key components in our model. 

Model 
SGDet SGCls PredCls 

mR@50 mR@100 mR@50 mR@100 mR@50 mR@100 

1 O&R-Transformer(base) 7.4 8.8 9.8 10.4 

 

17.6 19.0 

 2 Base + AFM 8.0 9.5 10.2 10.7 18.5 20.1 

3 Base + Classifier Head 7.5 8.8 9.7 10.3 17.8 19.3 

4 Base + SUM[14] 8.1 9.5 10.4 11.0 18.3 19.8 

4.4 Qualitative Analysis  
Fig. 4 shows several instances of PredCls generated by O&R-Transformer (gray) and O&R-
Transformer + DA (yellow). Despite having the strongest baseline of the four biased models, 
O&R-Transformer makes significant improvements when equipped with DA:(1) When 
applying DA, the model forecasts more precise and differentiated relationships than when only 
using O&R-Transformer. The baseline is inclined to predict plausible but insignificant head 
classes, as seen in Fig. 4 whereas our model correctly identifies more fine-grained and useful 
relations like walking on, riding on, and in front of. This is primarily due to the fact that DA 
successfully reassigns cumbersome head class links to more precise fine-grained ones. (2) DA 
allows the model to visibly and semantically differentiate comparable relations, which is 
challenging for O&R-Transformer to do. The O&R-Transformer wrongly forecasts the 
difference between walking on and standing on because it cannot distinguish between these 
two actions. By shifting the predicate categorization led by visual characteristics, our model 
can effectively differentiate identical relations and forecast relations to more accurate classes. 

 
Fig. 4. The scene graphs produced by O&R-Transformer(gray) and O&R-Transformer + DA(yellow). 

5. Conclusion 
In this paper, we propose a novel two-stage training strategy to address the long-tail 
distribution problem in Scene Graph Generation. Our method involves decoupling the process 
of SGG into feature extraction and classification stages, and applies a confidence-aware 
Distribution Alignment scheme to balance the predicate classes. We demonstrate that our 
method can significantly improve the performance of SGG on highly biased datasets, 
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achieving extraordinary results on several metrics. Our method is also model-independent and 
can be easily integrated with existing SGG models. We believe that our method can facilitate 
the development of more robust and unbiased scene graph generation systems for various 
applications. 
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